

# D-band CMOS Vector Modulator-Based Phase Shifter for Millimeter-Wave Imaging System

Ju-Hyeon Park<sup>°</sup>, Ha-Neul Lee, Hyeon-Jin Son, Joon-Hyuk Yoon, Ui-Gyu Choi, Seung-Jae Kim, Jae-Hyun Lee, Jong-Ryul Yang<sup>\*</sup> Konkuk University, Dept. of Electronic Engineering E-mail: <sup>°</sup>jh9999@konkuk.ac.kr, \*jryang@konkuk.ac.kr



#### **Motivate**

- Millimeter-wave Imaging Systems using Polarization
- By controlling polarization of transmitted signal, the detection of internal material properties at specific frequencies improves image quality.
- Due to the high attenuation of millimeter-waves in the air and high-transmission power is advantages in imaging systems, implementing a high-

power transmitter is required.

- A high-power phase shifter capable of controlling transmission signal polarization is proposed for imaging systems.

### Methods

• Design of Vector Modulated type Phase Shifter



By using Lange coupler, the low amplitude and phase imbalance I/Q



• Measurement Results of Proposed Phase Shifter



signal is implemented with small sizes ( $60\mu$ mx140 $\mu$ m).

- The single Gilbert-cell configuration VMPS being simpler than the double configuration leads to low parasitic and improves gain.
  Placing a transmission line between transconductance and
  - switching-cells enhances VGA gain and linearity by using resonance with parasitic capacitance [2].
  - By modifying current direction, minimizing impedance variations caused by voltage control, and optimizing output impedance matching.



## Conclusion

- D-band CMOS VMPS is proposed effectively controls signal polarization in millimeter-wave imaging. The fabricated VMPS achieved a gain of -11 dB, an input  $P_{1dB}$  of 4 dBm, and consumed 22.8 mW.

| Ref.                             | TMTT 2015  | <b>MWCL 2021</b> | <b>MWCL 2020</b> | This work        |
|----------------------------------|------------|------------------|------------------|------------------|
| Tech.                            | 250 nm InP | 55 nm BiCMOS     | 130 nm SiGe      | 65 nm CMOS       |
| Freq. (GHz)                      | 220–320    | 140–160          | 162–190          | 115–135          |
| Δ S <sub>22</sub>   <sup>a</sup> | 4 dB       | 3.4 dB           | 4.9 dB           | 2 dB             |
| Gain (dB)                        | -13.7 ±1.9 | -4.5             | -6.2             | -11 <sup>b</sup> |
| IP <sub>1dB</sub> (dBm)          | -0.7       | 2                | -13.5            | <b>7</b> c       |
| P <sub>dc</sub> (mW)             | 21.8–42    | 50               | 9.9–15.3         | 36               |
| Core Area (mm <sub>2</sub> )     | 0.23       | 0.05             | 0.07             | 0.053            |

< (a) Schematic (b) Chip photograph of the proposed phase shifter >

<sup>a</sup> Maximum Variation <sup>b</sup> Maximum gain <sup>c</sup> at 125 GHz

#### < Acknowledge >

- The chip fabrication and EDA tool usage were partly supported by the IC Design Education Center, Korea.

