

A 1T1C DRAM Compute-in-Memory BNN Accelerator

Jihwan Cho, Dalta Imam Maulana, Minkyu Yang, Changjoo Park, and Wanyeong Jung School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST) E-mail: {jihwancho, wanyeong}@kaist.ac.kr

Motivation

- Compute-in-memory (CIM) accelerators using SRAM and non- \bullet volatile memory (NVM) suffer from data transfer costs due to limited memory capacity
- DRAM CIM \rightarrow data proximity & high cell density
- DRAM CIM Challenge 1: data is destroyed after computation \bullet DRAM CIM **Challenge 2**: output non-linearity of analog CIM \bullet

1T1C CIM BNN Accelerator

- Analog CIM using 1T1C DRAM cell
- Whole array cells performs binary MAC in parallel
- 1-bit weight (1/0) is stored in each cell, and 1-bit input (+1/-1) is fed to WL The stored weight is reused \bullet multiple times unlike data destructive DRAM-CIM Comparator is used for BL readout and perform binary activation so that reduces ADC overhead

Block diagram of 1T1C CIM BNN accelerator

Measurement Results

Chip SUMMARY	
Technology	28nm CMOS
Chip area	1.26mm ²
Macro area	0.094mm ²
Maara aanaaitu	22.7 Kh

- system and 3281.9 TOPS/W for CIM macro.

Accuracy and linearity of computation output

Conclusion

- Analog CIM BNN accelerator using 1T1C DRAM array is fabricated in 28 nm CMOS technology.
- The accelerator enables data-reusable and linear DRAM CIM while achieving high throughput and energy efficiency.
- Energy efficiency of 568.2 TOPS/W for system and 3281.9 TOPS/W for CIM macro is achieved.

Acknowledgement The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

