

# **A Flexible RNS-CKKS Processor for FHE-Based Privacy-Preserving Computing**



**Hyunhoon Lee\*, Hyeokjun Kwon\*,** Youngjoo Lee Pohang University of Science and Technology, Pohang, Korea

Fully Homomorphic Encryption (FHE) has emerged as a crucial privacy-preserving solution for modern server systems handling sensitive data. Among FHE schemes, the CKKS approach based on Ring Learning with Error (RLWE) and the residue number system (RNS) is considered promising. However, efficient handling of FHE operations, particularly the bootstrapping step, remains a challenge due to significant computational costs. This paper proposes an integrated high-efficiency FHE processor tailored to meet the demands of RNS-CKKS schemes. The processor features novel design-level optimizations to reduce energy consumption and processing latency, including inter-/intra-set scheduling of residue polynomials and cost-reduced computing engines. Implemented in 28nm CMOS, the proposed processor demonstrates energy efficiencies outperforming recent works. The architecture includes dedicated computing engines for NTT/iNTT acceleration, base conversion, and arithmetic operations, managed by a top-level controller. The paper presents detailed designs for each computing engine, highlighting optimizations to support arbitrary input sizes and reduce on-chip memory requirements. Performance evaluation shows significant energy savings and latency improvements compared to existing architectures, making it a highly energy-efficient solution for RNS-CKKS-based FHE systems.

#### **Abstract**

# **Proposed NTT/iNTT hardware engine**



#### **Proposed Design and Design and Series and Series and Series Series and Series Series and Proposed Design and Proposed Design and Desi**

## **Proposed base conversion (Bconv) engine**





# **Proposed modular arithmetic engine**



## **Processor layout**



## **Comparison to other state-of-the-art accelerators**



∾г п ⊏ ассеїегатог рап опі<sub>.</sub>

<sup>b</sup>Paillier does not belong to lattice-based cryptosystems; and therefore, it cannot be represented as a polynomial form.



#### **Implementation Results**

[1] S. Song et al., "LEIA: A 2.05mm2 140mW Lattice Encryption Instruction Accelerator in 40nm CMOS," *IEEE CICC*, 2018.

[2] U. Banerjee et al., "An Energy-Efficient Configurable Lattice Cryptography Processor for the Quantum-Secure Internet of Things," *ISSCC*, pp. 46-48, 2019. [3] G. Shi et al., "A 28nm 68MOPS 0.18μJ/Op Paillier Homomorphic Encryption Processor with Bit-Serial Sparse Ciphertext Computing," *ISSCC*, pp.242-243, 2023. [4] N. Samardzic et al., "F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption," *IEEE/ACM MICRO,* pp.1295-1309, 2021. [5] N. Samardzic et al., "CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data," *ACM/IEEE ISCA,* pp.173-187, 2022. [6] Y. Yang et al., "Poseidon: Practical Homomorphic Encryption Accelerator," *IEEE HPCA*, pp.870-881, 2023.

